Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nanoscale Adv ; 6(4): 1059-1064, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356620

RESUMO

Our study reveals that the nano-mechanical measures of elasticity and cell mass change significantly through induced pluripotent stem cell (iPSC) differentiation to cardiomyocytes, providing a reliable method to evaluate such processes. The findings support the importance of identifying these properties, and highlight the potential of AFM for comprehensive characterization of iPSC at the nanoscale.

2.
J Pers Med ; 13(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38003849

RESUMO

Despite extensive research that has achieved notable advancements over the last decades, cardiovascular disease (CVD) remains the leading cause of death worldwide, with millions affected around the world [...].

3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686223

RESUMO

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold enormous potential in cardiac disease modeling, drug screening, and regenerative medicine. Furthermore, patient-specific iPSC-CMS can be tested for personalized medicine. To provide a deeper understanding of the contractile force dynamics of iPSC-CMs, we employed Atomic Force Microscopy (AFM) as an advanced detection tool to distinguish the characteristics of force dynamics at a single cell level. We measured normal (vertical) and lateral (axial) force at different pacing frequencies. We found a significant correlation between normal and lateral force. We also observed a significant force-frequency relationship for both types of forces. This work represents the first demonstration of the correlation of normal and lateral force from individual iPSC-CMs. The identification of this correlation is relevant because it validates the comparison across systems and models that can only account for either normal or lateral force. These findings enhance our understanding of iPSC-CM properties, thereby paving the way for the development of therapeutic strategies in cardiovascular medicine.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Humanos , Doenças Cardiovasculares/terapia , Medicina de Precisão , Miócitos Cardíacos , Análise de Célula Única
4.
Stem Cell Res ; 72: 103208, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37748331

RESUMO

The rare genetic alteration PLN-c.(40_42delAGA), leading to the deletion of arginine 14 (p.R14del) in phospholamban, is associated with dilated and arrhythmogenic cardiomyopathies occurring in early-adulthood. However, some carriers remain asymptomatic with normal lifespans. Here, we report human induced pluripotent stem cell (iPSC) lines generated from peripheral blood mononuclear cells (PBMCs) of five PLN-R14del carriers, who were asymptomatic at the time of blood collection, and one non-carrier family member. Each line exhibited typical iPSC morphology, pluripotency markers, and tri-lineage differentiation. These cell lines provide a valuable model to investigate the mechanisms underlying the onset, progression, and patient-specific resistance to PLN-R14del-induced cardiomyopathy.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Adulto , Leucócitos Mononucleares , Cardiomiopatias/genética , Mutação
5.
Artigo em Inglês | MEDLINE | ID: mdl-37476002

RESUMO

Background: The field of tissue engineering has provided valuable three-dimensional species-specific models of the human myocardium in the form of human Engineered Cardiac Tissues (hECTs) and similar constructs. However, hECT systems are often bottlenecked by a lack of openly available software that can collect data from multiple tissues at a time, even in multi-tissue bioreactors, which limits throughput in phenotypic and therapeutic screening applications. Methods: We developed Rianú, an open-source web application capable of simultaneously tracking multiple hECTs on flexible end-posts. This software is operating system agnostic and deployable on a remote server, accessible via a web browser with no local hardware or software requirements. The software incorporates object-tracking capabilities for multiple objects simultaneously, an algorithm for twitch tracing analysis and contractile force calculation, and a data compilation system for comparative analysis within and amongst groups. Validation tests were performed using in-silico and in-vitro experiments for comparison with established methods and interventions. Results: Rianú was able to detect the displacement of the flexible end-posts with a sub-pixel sensitivity of 0.555 px/post (minimum increment in post displacement) and a lower limit of 1.665 px/post (minimum post displacement). Compared to our established reference for contractility assessment, Rianú had a high correlation for all parameters analyzed (ranging from R2=0.7514 to R2=0.9695), demonstrating its high accuracy and reliability. Conclusions: Rianú provides simultaneous tracking of multiple hECTs, expediting the recording and analysis processes, and simplifies time-based intervention studies. It also allows data collection from different formats and has scale-up capabilities proportional to the number of tissues per field of view. These capabilities will enhance throughput of hECTs and similar assays for in-vitro analysis in disease modeling and drug screening applications.

6.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335101

RESUMO

Heart failure remains the leading cause of death worldwide, creating a pressing need for better preclinical models of the human heart. Tissue engineering is crucial for basic science cardiac research; in vitro human cell culture eliminates the interspecies differences of animal models, while a more tissue-like 3D environment (e.g., with extracellular matrix and heterocellular coupling) simulates in vivo conditions to a greater extent than traditional two-dimensional culture on plastic Petri dishes. However, each model system requires specialized equipment, for example, custom-designed bioreactors and functional assessment devices. Additionally, these protocols are often complicated, labor-intensive, and plagued by the failure of the small, delicate tissues. This paper describes a process for generating a robust human engineered cardiac tissue (hECT) model system using induced pluripotent stem-cell-derived cardiomyocytes for the longitudinal measurement of tissue function. Six hECTs with linear strip geometry are cultured in parallel, with each hECT suspended from a pair of force-sensing polydimethylsiloxane (PDMS) posts attached to PDMS racks. Each post is capped with a black PDMS stable post tracker (SPoT), a new feature that improves the ease of use, throughput, tissue retention, and data quality. The shape allows for the reliable optical tracking of post deflections, yielding improved twitch force tracings with absolute active and passive tension. The cap geometry eliminates tissue failure due to hECTs slipping off the posts, and as they involve a second step after PDMS rack fabrication, the SPoTs can be added to existing PDMS post-based designs without major changes to the bioreactor fabrication process. The system is used to demonstrate the importance of measuring hECT function at physiological temperatures and shows stable tissue function during data acquisition. In summary, we describe a state-of-the-art model system that reproduces key physiological conditions to advance the biofidelity, efficiency, and rigor of engineered cardiac tissues for in vitro applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Animais , Humanos , Engenharia Tecidual/métodos , Contração Miocárdica , Miócitos Cardíacos , Reatores Biológicos
7.
Tissue Eng Part A ; 28(23-24): 990-1000, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170590

RESUMO

Cardiac tissue engineering has been working to alleviate the immense burden of cardiovascular disease for several decades. To improve cardiac tissue homogeneity and cardiomyocyte (CM) maturation, in this study, we investigated altering initial encapsulation geometry in a three-dimensional (3D) direct cardiac differentiation platform. Traditional engineered cardiac tissue production utilizes predifferentiated CMs to produce 3D cardiac tissue and often involves various cell selection and exogenous stimulation methods to promote CM maturation. Starting tissue formation directly with human induced pluripotent stem cells (hiPSCs), rather than predifferentiated CMs, simplifies the engineered cardiac tissue formation process, making it more applicable for widespread implementation and scale-up. In this study, hiPSCs were encapsulated in poly (ethylene glycol)-fibrinogen in three tissue geometries (disc-shaped microislands, squares, and rectangles) and subjected to established cardiac differentiation protocols. Resulting 3D engineered cardiac tissues (3D-ECTs) from each geometry displayed similar CM populations (∼65%) and gene expression over time. Notably, rectangular tissues displayed less tissue heterogeneity and suggested more advanced features of maturing CMs, including myofibrillar alignment and Z-line formation. In addition, rectangular tissue showed significantly higher anisotropic contractile properties compared to square and microisland tissues (MI 0.28 ± 0.03, SQ 0.35 ± 0.05, RT 0.79 ± 0.04). This study demonstrates a straightforward method for simplifying and improving 3D-ECT production without the use of exogenous mechanical or electrical pacing and has the potential to be utilized in bioprinting and drug testing applications. Impact statement Current methods for improving cardiac maturation postdifferentiation remain tedious and complex. In this study, we examined the impact of initial encapsulation geometry on improvement of three-dimensional engineered cardiac tissue (3D-ECT) production and postdifferentiation maturation for three tissue geometries, including disc-shaped microislands, squares, and rectangles. Notably, rectangular 3D-ECTs displayed less tissue heterogeneity and more advanced features of maturing cardiomyocytes, including myofibrillar alignment, Z-line formation, and anisotropic contractile properties, compared to microisland and square tissues. This study demonstrates an initial human induced pluripotent stem cell-encapsulated rectangular tissue geometry can improve cardiac maturation, rather than implementing cell selection or tedious postdifferentiation manipulation, including exogenous mechanical and/or electrical pacing.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Engenharia Tecidual/métodos , Miocárdio , Miócitos Cardíacos , Diferenciação Celular
8.
Cells ; 11(6)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35326434

RESUMO

Over the past decades, a better understanding of the genetic and molecular alterations underlying several respiratory diseases has encouraged the development of new therapeutic strategies. Gene therapy offers new therapeutic alternatives for inherited and acquired diseases by delivering exogenous genetic materials into cells or tissues to restore physiological protein expression and/or activity. In this review, we review (1) different types of viral and non-viral vectors as well as gene-editing techniques; and (2) the application of gene therapy for the treatment of respiratory diseases and disorders, including pulmonary arterial hypertension, idiopathic pulmonary fibrosis, cystic fibrosis, asthma, alpha-1 antitrypsin deficiency, chronic obstructive pulmonary disease, non-small-cell lung cancer, and COVID-19. Further, we also provide specific examples of lung-targeted therapies and discuss the major limitations of gene therapy.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Fibrose Cística , Neoplasias Pulmonares , COVID-19/genética , COVID-19/terapia , Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo
9.
Stem Cell Res ; 60: 102737, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247838

RESUMO

The R14del pathogenic variant in the phospholamban (PLN) gene (PLN-R14del), has been identified in families with hereditary cardiomyopathy, including dilated and arrhythmogenic cardiomyopathies. Here we have generated human iPSC lines from five PLN-R14del carriers and three non-carrier family members. Peripheral blood mononuclear cells (PBMC) were obtained from the eight individuals and reprogrammed using Sendai viral vector system carrying the Yamanaka factors. All eight lines show typical iPSC morphology, normal karyotype, high expression of pluripotency markers, and possess the ability to differentiate into all three germ layers. These lines represent valuable resources for studying the pathophysiological mechanisms of PLN-R14del associated cardiomyopathy.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação
10.
Cardiovasc Res ; 118(15): 3140-3150, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191471

RESUMO

AIMS: A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS: Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS: This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.


Assuntos
Cardiomiopatias , Edição de Genes , Humanos , Camundongos , Animais , Cardiomiopatias/genética , Cardiomiopatias/terapia
11.
Sens Actuators A Phys ; 3312021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34305317

RESUMO

Induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) have great potential for cell therapy, drug assessment, and for understanding the pathophysiology and genetic underpinnings of cardiac diseases. Contraction forces are one of the most important characteristics of cardiac function and are predictors of healthy and diseased states. Cantilever techniques, such as atomic force microscopy, measure the vertical force of a single cell, while systems designed to more closely resemble the physical heart function, such as engineered cardiac tissue held by end-posts, measure the axial force. One important question is how do these two force measurements correlate? By establishing a correlation of the axial and vertical force, we will be one step closer in being able to use single cell iPSC-CMs as models. A novel micromachined sensor for measuring force contractions of engineered tissue has been developed. Using this novel sensor, a correlation between axial force and vertical force is experimentally established. This finding supports the use of vertical measurements as an alternative to tissue measurements.

12.
Front Cell Dev Biol ; 9: 653127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113613

RESUMO

Engineered cardiac tissues (ECTs) are 3D physiological models of the heart that are created and studied for their potential role in developing therapies of cardiovascular diseases and testing cardio toxicity of drugs. Recreating the microenvironment of the native myocardium in vitro mainly involves the use of cardiomyocytes. However, ECTs with only cardiomyocytes (CM-only) often perform poorly and are less similar to the native myocardium compared to ECTs constructed from co-culture of cardiomyocytes and nonmyocytes. One important goal of co-culture tissues is to mimic the native heart's cellular composition, which can result in better tissue function and maturity. In this review, we investigate the role of nonmyocytes in ECTs and discuss the mechanisms behind the contributions of nonmyocytes in enhancement of ECT features.

13.
Front Physiol ; 12: 755881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046835

RESUMO

Myocardial delivery of human c-kit+ cardiac interstitial cells (hCICs) and human mesenchymal stem cells (hMSCs), an emerging approach for treating the failing heart, has been limited by an incomplete understanding of the effects on host myocardium. This computational study aims to model hCIC and hMSC effects on electrophysiology and calcium cycling of healthy and diseased human cardiomyocytes (hCM), and reveals a possible cardiotherapeutic benefit independent of putative regeneration processes. First, we developed an original hCIC mathematical model with an electrical profile comprised of distinct experimentally identified ion currents. Next, we verified the model by confirming it is representative of published experiments on hCIC whole-cell electrophysiology and on hCIC co-cultures with rodent cardiomyocytes. We then used our model to compare electrophysiological effects of hCICs to other non-excitable cells, as well as clinically relevant hCIC-hMSC combination therapies and fused hCIC-hMSC CardioChimeras. Simulation of direct coupling of hCICs to healthy or failing hCMs through gap junctions led to greater increases in calcium cycling with lesser reductions in action potential duration (APD) compared with hMSCs. Combined coupling of hCICs and hMSCs to healthy or diseased hCMs led to intermediate effects on electrophysiology and calcium cycling compared to individually coupled hCICs or hMSCs. Fused hCIC-hMSC CardioChimeras decreased healthy and diseased hCM APD and calcium transient amplitude compared to individual or combined cell treatments. Finally, to provide a theoretical basis for optimizing cell-based therapies, we randomized populations of 2,500 models incorporating variable hMSC and hCIC interventions and simulated their effects on restoring diseased cardiomyocyte electrophysiology and calcium handling. The permutation simulation predicted the ability to correct abnormal properties of heart failure hCMs in fibrotic, but not non-fibrotic, myocardium. This permutation experiment also predicted paracrine signaling to be a necessary and sufficient mechanism for this correction, counteracting the fibrotic effects while also restoring arrhythmia-related metrics such as upstroke velocity and resting membrane potential. Altogether, our in silico findings suggest anti-fibrotic effects of paracrine signaling are critical to abrogating pathological cardiomyocyte electrophysiology and calcium cycling in fibrotic heart failure, and support further investigation of delivering an optimized cellular secretome as a potential strategy for improving heart failure therapy.

14.
Stem Cell Res Ther ; 10(1): 373, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801634

RESUMO

BACKGROUND: Delivery of stem cells to the failing heart is a promising therapeutic strategy. However, the improvement in cardiac function in animal studies has not fully translated to humans. To help bridge the gap between species, we investigated the effects of adult human cardiac stem cells (hCSCs) on contractile function of human engineered cardiac tissues (hECTs) as a species-specific model of the human myocardium. METHODS: Human induced pluripotent stem cell-derived cardiomyoctes (hCMs) were mixed with Collagen/Matrigel to fabricate control hECTs, with an experimental group of hCSC-supplemented hECT fabricated using a 9:1 ratio of hCM to hCSC. Functional testing was performed starting on culture day 6, under spontaneous conditions and also during electrical pacing from 0.25 to 1.0 Hz, measurements repeated at days 8 and 10. hECTs were then frozen and processed for gene analysis using a Nanostring assay with a cardiac targeted custom panel. RESULTS: The hCSC-supplemented hECTs displayed a twofold higher developed force vs. hCM-only controls by day 6, with approximately threefold higher developed stress and maximum rates of contraction and relaxation during pacing at 0.75 Hz. The spontaneous beat rate characteristics were similar between groups, and hCSC supplementation did not adversely impact beat rate variability. The increased contractility persisted through days 8 and 10, albeit with some decrease in the magnitude of the difference of the force by day 10, but with developed stress still significantly higher in hCSC-supplemented hECT; these findings were confirmed with multiple hCSC and hCM cell lines. The force-frequency relationship, while negative for both, control (- 0.687 Hz- 1; p = 0.013 vs. zero) and hCSC-supplemented (- 0.233 Hz- 1;p = 0.067 vs. zero) hECTs, showed a significant rectification in the regression slope in hCSC-supplemented hECT (p = 0.011 vs. control). Targeted gene exploration (59 genes) identified a total of 14 differentially expressed genes, with increases in the ratios of MYH7/MHY6, MYL2/MYL7, and TNNI3/TNNI1 in hCSC-supplemented hECT versus controls. CONCLUSIONS: For the first time, hCSC supplementation was shown to significantly improve human cardiac tissue contractility in vitro, without evidence of proarrhythmic effects, and was associated with increased expression of markers of cardiac maturation. These findings provide new insights about adult cardiac stem cells as contributors to functional improvement of human myocardium.


Assuntos
Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Diferenciação Celular , Colágeno/química , Combinação de Medicamentos , Estimulação Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/química , Miocárdio/citologia , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteoglicanas/química , Transcriptoma , Troponina I/genética , Troponina I/metabolismo
15.
Vasc Med ; 24(5): 383-394, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31090495

RESUMO

Diabetes mellitus (DM) and chronic kidney disease (CKD) separately are known to facilitate the progression of medial arterial calcification (MAC) in patients with symptomatic peripheral artery disease (PAD), but their combined effect on MAC and associated mediators of calcification is not well studied. The association of MAC and calcification inducer bone morphogenetic protein (BMP-2) and inhibitor fetuin-A, with PAD, is well known. Our aim was to investigate the association of MAC with alterations in BMP-2 and fetuin-A protein expression in patients with PAD with DM and/or CKD. Peripheral artery plaques (50) collected during directional atherectomy from symptomatic patients with PAD were evaluated, grouped into no-DM/no-CKD (n = 14), DM alone (n = 10), CKD alone (n = 12), and DM+CKD (n = 14). MAC density was evaluated using hematoxylin and eosin, and alizarin red stain. Analysis of inflammation, neovascularization, BMP-2 and fetuin-A protein density was performed by immunohistochemistry. MAC density, inflammation grade and neovessel content were significantly higher in DM+CKD versus no-DM/no-CKD and CKD (p < 0.01). BMP-2 protein density was significantly higher in DM+CKD versus all other groups (p < 0.01), whereas fetuin-A protein density was significantly lower in DM+CKD versus all other groups (p < 0.001). The combined presence of DM+CKD may be associated with MAC severity in PAD plaques more so than DM or CKD alone, as illustrated in this study, where levels of calcification mediators BMP-2 and fetuin-A protein were related most robustly to DM+CKD. Further understanding of mechanisms involved in mediating calcification and their association with DM and CKD may be useful in improving management and developing therapeutic interventions.


Assuntos
Proteína Morfogenética Óssea 2/análise , Complicações do Diabetes/etiologia , Artéria Femoral/química , Doença Arterial Periférica/etiologia , Insuficiência Renal Crônica/complicações , Calcificação Vascular/etiologia , alfa-2-Glicoproteína-HS/análise , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Estudos Transversais , Complicações do Diabetes/diagnóstico , Complicações do Diabetes/metabolismo , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/metabolismo , Prognóstico , Insuficiência Renal Crônica/diagnóstico , Medição de Risco , Fatores de Risco , Calcificação Vascular/diagnóstico , Calcificação Vascular/metabolismo
16.
J Mol Cell Cardiol ; 127: 20-30, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502350

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) results in right ventricular (RV) failure, electro-mechanical dysfunction and heightened risk of sudden cardiac death (SCD), although exact mechanisms and predisposing factors remain unclear. Because impaired chronotropic response to exercise is a strong predictor of early mortality in patients with PAH, we hypothesized that progressive elevation in heart rate can unmask ventricular tachyarrhythmias (VT) in a rodent model of monocrotaline (MCT)-induced PAH. We further hypothesized that intra-tracheal gene delivery of aerosolized AAV1.SERCA2a (AAV1.S2a), an approach which improves pulmonary vascular remodeling in PAH, can suppress VT in this model. OBJECTIVE: To determine the efficacy of pulmonary AAV1.S2a in reversing electrophysiological (EP) remodeling and suppressing VT in PAH. METHODS: Male rats received subcutaneous injection of MCT (60 mg/kg) leading to advanced PAH. Three weeks following MCT, rats underwent intra-tracheal delivery of aerosolized AAV1.S2a (MCT + S2a, N = 8) or saline (MCT, N = 9). Age-matched rats served as controls (CTRL, N = 7). The EP substrate and risk of VT were determined using high-resolution optical action potential (AP) mapping ex vivo. The expression levels of key ion channel subunits, fibrosis markers and hypertrophy indices were measured by RT-PCR and histochemical analyses. RESULTS: Over 80% of MCT but none of the CTRL hearts were prone to sustained VT by rapid pacing (P < .01). Aerosolized gene delivery of AAV1.S2a to the lung suppressed the incidence of VT to <15% (P < .05). Investigation of the EP substrate revealed marked prolongation of AP duration (APD), increased APD heterogeneity, a reversal in the trans-epicardial APD gradient, and marked conduction slowing in untreated MCT compared to CTRL hearts. These myocardial EP changes coincided with major remodeling in the expression of K and Ca channel subunits, decreased expression of Cx43 and increased expression of pro-fibrotic and pro-hypertrophic markers. Intra-tracheal gene delivery of aerosolized AAV1 carrying S2a but not luciferase resulted in selective upregulation of the human isoform of SERCA2a in the lung but not the heart. This pulmonary intervention, in turn, ameliorated MCT-induced APD prolongation, reversed spatial APD heterogeneity, normalized myocardial conduction, and suppressed the incidence of pacing-induced VT. Comparison of the minimal conduction velocity (CV) generated at the fastest pacing rate before onset of VT or at the end of the protocol revealed significantly lower values in untreated compared to AAV1.S2a treated PAH and CTRL hearts. Reversal of EP remodeling by pulmonary AAV1.S2a gene delivery was accompanied by restored expression of key ion channel transcripts. Restored expression of Cx43 and collagen but not the pore-forming Na channel subunit Nav1.5 likely ameliorated VT by improving CV at rapid rates in PAH. CONCLUSION: Aerosolized AAV1.S2a gene delivery selectively to the lungs ameliorates myocardial EP remodeling and VT susceptibility at rapid heart rates. Our findings highlight for the first time the utility of a non-cardiac gene therapy approach for arrhythmia suppression.


Assuntos
Aerossóis/administração & dosagem , Arritmias Cardíacas/terapia , Técnicas de Transferência de Genes , Hipertensão Arterial Pulmonar/terapia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Traqueia/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Terapia Genética , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Canais de Potássio/genética , Canais de Potássio/metabolismo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
17.
Methods Mol Biol ; 1816: 145-159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987817

RESUMO

The lack of biomimetic in vitro models of the human heart has posed a critical barrier to progress in the field of modeling cardiac disease. Human engineered cardiac tissues (hECTs)-autonomous, beating structures that recapitulate key aspects of native cardiac muscle physiology-offer an attractive alternative to traditional in vitro models. Here we describe the use of hECTs to advance our understanding and modeling of cardiac diseases in order to test therapeutic interventions, with a focus on contractile dysfunction in the setting of inherited and acquired forms of cardiomyopathies. Four major procedures are discussed in this chapter: (1) preparation of hECTs from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on single-tissue and multitissue bioreactors; (2) data acquisition of hECT contractile function on both of these platforms; (3) hECT modeling of hereditary phospholamban-R14 deletion-dilated cardiomyopathy; and (4) cryo-injury and doxorubicin-induced hECT models of acquired cardiomyopathy.


Assuntos
Cardiomiopatias/patologia , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Reatores Biológicos , Cardiomiopatias/etiologia , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/patologia , Doxorrubicina , Desenho de Equipamento , Congelamento , Humanos , Contração Miocárdica , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Engenharia Tecidual/instrumentação
18.
Methods Mol Biol ; 1816: 175-182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987819

RESUMO

Temporary or permanent left coronary artery (LCA) ligation is the most widely used model of heart failure. In the present protocol, we describe the materials necessary for the procedure, key steps of the LCA ligation, triphenyl tetrazolium chloride (TTC) staining, and calculation of myocardial infarction (MI) size after ischemia-reperfusion (I/R) injury (30 min/24 h) in rats and mice. We discuss precautions and tips regarding the operation before and after surgery, both in vivo and ex vivo. The aim of this chapter is to describe the details of LCA surgery and provide recommendations for current and future surgical operators.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Isquemia Miocárdica/patologia , Miocárdio/patologia , Animais , Vasos Coronários/patologia , Vasos Coronários/cirurgia , Insuficiência Cardíaca/etiologia , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Isquemia Miocárdica/etiologia , Ratos , Ratos Sprague-Dawley
19.
J Mol Cell Cardiol ; 119: 147-154, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752948

RESUMO

Dilated cardiomyopathy (DCM) can be caused by mutations in the cardiac protein phospholamban (PLN). We used CRISPR/Cas9 to insert the R9C PLN mutation at its endogenous locus into a human induced pluripotent stem cell (hiPSC) line from an individual with no cardiovascular disease. R9C PLN hiPSC-CMs display a blunted ß-agonist response and defective calcium handling. In 3D human engineered cardiac tissues (hECTs), a blunted lusitropic response to ß-adrenergic stimulation was observed with R9C PLN. hiPSC-CMs harboring the R9C PLN mutation showed activation of a hypertrophic phenotype, as evidenced by expression of hypertrophic markers and increased cell size and capacitance of cardiomyocytes. RNA-seq suggests that R9C PLN results in an altered metabolic state and profibrotic signaling, which was confirmed by gene expression analysis and picrosirius staining of R9C PLN hECTs. The expression of several miRNAs involved in fibrosis, hypertrophy, and cardiac metabolism were also perturbed in R9C PLN hiPSC-CMs. This study contributes to better understanding of the pathogenic mechanisms of the hereditary R9C PLN mutation in the context of human cardiomyocytes.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transcriptoma , Agonistas Adrenérgicos beta/metabolismo , Análise de Variância , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Crescimento Celular , Linhagem Celular , Tamanho Celular , Fibrose , Edição de Genes , Humanos , MicroRNAs/metabolismo , Mutação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Engenharia Tecidual , Transfecção
20.
J Appl Physiol (1985) ; 124(3): 632-640, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29051335

RESUMO

The aim of this study was to explore the role of abnormal coronary microvasculature morphology and hemodynamics in the development of congestive heart failure (CHF). CHF was induced in rats by aortic banding, followed by ischemia-reperfusion and later aortic debanding. Polymerized casts of coronary vasculature were imaged under a scanning electron microscope (SEM). Matrix Laboratory (MATLAB) software was used to calculate capillary structure index (CSI), a measure of structural alignment also called mean vector length (MVL), for 93 SEM images of coronary capillaries (CSI→1 perfect linearity; CSI→0 circular disarray). CSI was incorporated as a constant to represent tortuosity and nonlaminar flow in Poiseuille's equation to estimate the differences in capillary blood flow rate, velocity, and resistance for CHF vs. CONTROL: The morphology of CHF capillaries is significantly disordered and tortuous compared with control (CSI: 0.35 ± 0.02 for 61 images from 7 CHF rats; 0.58 ± 0.02 for 32 images from 7 control rats; P < 0.01). Estimated capillary resistance in CHF is elevated by 173% relative to control, while blood flow rate and blood velocity are 56 and 43% slower than control. Capillary resistance increased 67% due to the significantly narrower capillary diameter in CHF, while it increased an additional 105% due to tortuosity. The significant structural abnormalities of CHF coronary capillaries may drastically stagnate hemodynamics in myocardium and increase resistance to blood flow. This could play a role in the development of CHF. NEW & NOTEWORTHY In the present study, coronary capillary tortuosity was measured by applying Matrix Laboratory software to scanning electron microscope images of capillaries in a rat model of congestive heart failure. Stagnant blood flow in coronary capillaries may play a role in the development of congestive heart failure. The application of computer modeling to histological and physiological data to characterize the hemodynamics of coronary microcirculation is a new area of study.


Assuntos
Capilares/fisiopatologia , Circulação Coronária , Insuficiência Cardíaca/fisiopatologia , Modelos Biológicos , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...